Similar mechanisms underlie simultaneous brightness contrast and grating induction
نویسندگان
چکیده
The experiments explore whether the mechanism(s) underlying grating induction (GI) can also account for simultaneous brightness contrast (SBC). At each of three test field heights (1, 3 and 6 deg), point-by-point brightness matches were obtained from two subjects for test field widths of 32 deg (GI condition), 14, 12, 8, 6, 3 and 1 deg. The point-by-point brightness matches were quantitatively compared, using GI condition matches as a standard, to assess systematic alterations in the structure and average magnitude of brightness and darkness induction within the test fields as a function of changing test field height and width. In the wider test fields induction structure was present and was generally well-accounted for by the GI condition sinewave predictions. As test field width decreased the sinewave amplitude of the induced structure in the test field decreased (i.e., flattened), and eventually became negative (i.e., showed a reverse cusping) at the narrower test field widths. As expected, both subjects showed a decrease in overall levels of brightness and darkness induction with increasing test field height. For any particular test field height, however, relative brightness increased with decreasing test field width. This brightness increase began at larger test field widths as test field height increased. The results are parsimoniously accounted for by the output of a weighted, octave-interval array of seven difference-of-gaussian filters. This array of filters differs from those previously employed to model various aspects of spatial vision in that it includes filters tuned to much lower spatial frequencies. The two-dimensional output of this same array of filters also accounts for the GI demonstrations of Zaidi [(1989) Vision Research, 29, 691-697], Shapley and Reid's [(1985) Proceedings of the National Academy of Sciences USA, 82, 5983-5986] contrast and assimilation demonstration, and the induced spots seen at the street intersections of the Hermann Grid. The physiological plausibility of the filter array explanation of brightness induction is discussed, along with a consideration of its relationship to other models of brightness perception.
منابع مشابه
A multiscale spatial filtering account of the Wertheimer–Benary effect and the corrugated Mondrian
Blakeslee and McCourt [Blakeslee, B., & McCourt, M.E. (1997). Similar mechanisms underlie simultaneous brightness contrast and grating induction. Vision Research, 37, 2849-2869] demonstrated that a multiscale array of two-dimensional difference-of-Gaussian (DOG) filters provided a simple but powerful model for explaining a number of seemingly complex features of grating induction (GI), while si...
متن کاملMultiresolution wavelet framework models brightness induction effects
A new multiresolution wavelet model is presented here, which accounts for brightness assimilation and contrast effects in a unified framework, and includes known psychophysical and physiological attributes of the primate visual system (such as spatial frequency channels, oriented receptive fields, contrast sensitivity function, contrast non-linearities, and a unified set of parameters). Like ot...
متن کاملStationary phantoms and grating induction with oblique inducing gratings: implications for different mechanisms underlying the two phenomena.
The visibility of stationary visual phantoms and the grating induction (GI) effect were concurrently analyzed with both black and gray inspection areas (IA) using the same subjects with counterbalanced orders of measurements. Oblique inducing gratings were employed in order to compare the visibility of obliquely aligned and vertically misaligned appearances between the two phenomena. Aligned an...
متن کاملA multiscale spatial filtering account of the White effect, simultaneous brightness contrast and grating induction
Blakeslee and McCourt ((1997) Vision Research, 37, 2849-2869) demonstrated that a multiscale array of two-dimensional difference-of-Gaussian (DOG) filters provided a simple but powerful model for explaining a number of seemingly complex features of grating induction (GI), while simultaneously encompassing salient features of brightness induction in simultaneous brightness contrast (SBC), bright...
متن کاملThe mechanisms involved in brightness induction effects: a reply to Zaidi.
McCourt (1982) described what he called the “grating induction effect”: an illusory grating is induced in a physically homogeneous grey stripe superimposed upon and orthogonal to a sinewave grating. The induced grating is 180 deg out of phase with, and (at least in the case described above) has the same spatial frequency and orientation as, the inducing grating. Zaidi (1989) has recently descri...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Vision Research
دوره 37 شماره
صفحات -
تاریخ انتشار 1997